9.

Recursive least squares
off-line version (with storing data in memory)

$$
\widehat{a}_{N}=\left(X_{N}^{T} X_{N}\right)^{-1} X_{N}^{T} Y_{N}
$$

on-line version (recursive)

$$
a_{N}=f\left(a_{N-1}, x_{N}, y_{N}\right)=a_{N-1}+\delta\left(a_{N-1}, x_{N}, y_{N}\right)
$$

Problem: matrix to be inverted

$$
X_{N}^{T} X_{N}=\sum_{k=1}^{N} x_{k} x_{k}^{T}=\sum_{k=1}^{N-1} x_{k} x_{k}^{T}+x_{N} x_{N}^{T}=X_{N-1}^{T} X_{N-1}+x_{N} x_{N}^{T}
$$

Let

$$
\begin{aligned}
& P_{N}=\left(X_{N}^{T} X_{N}\right)^{-1} \\
& \operatorname{cov}\left(a_{N}\right)=P_{N} \sigma_{z}^{2}
\end{aligned}
$$

We get

$$
\begin{gathered}
a_{N}=P_{N} X_{N}^{T} Y_{N} \\
a_{N-1}=P_{N-1} X_{N-1}^{T} Y_{N-1} \\
P_{N}=\left(P_{N-1}^{-1}+x_{N} x_{N}^{T}\right)^{-1}, \text { where } P_{N-1}^{-1}=X_{N-1}^{T} X_{N-1}
\end{gathered}
$$

Lemat 1 It holds that

$$
\left(A+u u^{T}\right)^{-1}=A^{-1}-\frac{1}{1+u^{T} A^{-1} u} A^{-1} u u^{T} A^{-1}
$$

For $A=P_{N-1}^{-1}$ and $u=x_{N}$ we have that

$$
P_{N}=P_{N-1}-\frac{1}{1+x_{N}^{T} P_{N-1} x_{N}} P_{N-1} x_{N} x_{N}^{T} P_{N-1}=P_{N-1}-\varkappa_{N} P_{N-1} x_{N} x_{N}^{T} P_{N-1}
$$

where $\varkappa_{N}=\frac{1}{1+x_{N}^{T} P_{N-1} x_{N}}$

$$
\begin{aligned}
a_{N} & =\left(P_{N-1}-\varkappa_{N} P_{N-1} x_{N} x_{N}^{T} P_{N-1}\right)\left(X_{N-1}^{T} Y_{N-1}+x_{N} y_{N}\right)= \\
& =P_{N-1} X_{N-1}^{T} Y_{N-1}+P_{N-1} x_{N} y_{N}-\left[\varkappa_{N} P_{N-1} x_{N}\right]\left(x_{N}^{T} P_{N-1} X_{N-1}^{T} Y_{N-1}+x_{N}^{T} P_{N-1} x_{N} y_{N}\right)= \\
& =a_{N-1}+\left[\varkappa_{N} P_{N-1} x_{N}\right]\left\{\frac{1}{\varkappa_{N}} y_{N}-x_{N}^{T} a_{N-1}-x_{N}^{T} P_{N-1} x_{N} y_{N}\right\}
\end{aligned}
$$

but since

$$
\frac{1}{\varkappa_{N}}=1+x_{N}^{T} P_{N-1} x_{N}
$$

we conclude that

$$
\{\ldots\}=y_{N}+x_{N}^{T} P_{N-1} x_{N} y_{N}-x_{N}^{T} a_{N-1}-x_{N}^{T} P_{N-1} x_{N} y_{N}=y_{N}-x_{N}^{T} a_{N-1}
$$

and hence

$$
\begin{aligned}
& a_{N}=a_{N-1}+\varkappa_{N} P_{N-1} x_{N}\left(y_{N}-x_{N}^{T} a_{N-1}\right) \\
& P_{N}=P_{N-1}-\varkappa_{N} P_{N-1} x_{N} x_{N}^{T} P_{N-1} / \cdot x_{N} \\
& P_{N} x_{N}= P_{N-1} x_{N}-\varkappa_{N} P_{N-1} x_{N} x_{N}^{T} P_{N-1} x_{N}=\varkappa_{N} P_{N-1} x_{N}\left\{\frac{1}{\varkappa_{N}}-x_{N}^{T} P_{N-1} x_{N}\right\} \\
&\{\ldots\}=1 \\
& P_{N} x_{N}= \varkappa_{N} P_{N-1} x_{N}
\end{aligned}
$$

finally, (1) can be shown in the form

$$
\begin{aligned}
a_{N} & =a_{N-1}+P_{N} x_{N}\left(y_{N}-x_{N}^{T} a_{N-1}\right) \\
\text { where } P_{N} & =P_{N-1}-\frac{P_{N-1} x_{N} x_{N}^{T} P_{N-1}}{1+x_{N}^{T} P_{N-1} x_{N}}
\end{aligned}
$$

initial conditions

$$
a_{0}=0, P_{0}=\operatorname{diag}\left[10^{3} \div 10^{5}\right]
$$

advantages: algorithm works without matrix inversion computation, measurement need not to be stored in memory
weighted least squares (with exponential forgetting)

$$
\begin{aligned}
a_{N} & =a_{N-1}+P_{N} x_{N}\left(y_{N}-x_{N}^{T} a_{N-1}\right) \\
P_{N} & =\frac{1}{\lambda}\left(P_{N-1}-\frac{P_{N-1} x_{N} x_{N}^{T} P_{N-1}}{\lambda+x_{N}^{T} P_{N-1} x_{N}}\right)
\end{aligned}
$$

for dynamic system

$$
\begin{aligned}
\theta_{N} & =\theta_{N-1}+P_{N} \varphi_{N}\left(y_{N}-\varphi_{N}^{T} \theta_{N-1}\right) \\
P_{N} & =\frac{1}{\lambda}\left(P_{N-1}-\frac{P_{N-1} \varphi_{N} \varphi_{N}^{T} P_{N-1}}{\lambda+\varphi_{N}^{T} P_{N-1} \varphi_{N}}\right)
\end{aligned}
$$

instrumental variables

$$
\begin{aligned}
\theta_{N} & =\theta_{N-1}+P_{N} \psi_{N}\left(y_{N}-\varphi_{N}^{T} \theta_{N-1}\right) \\
P_{N} & =\frac{1}{\lambda}\left(P_{N-1}-\frac{P_{N-1} \psi_{N} \varphi_{N}^{T} P_{N-1}}{\lambda+\varphi_{N}^{T} P_{N-1} \psi_{N}}\right)
\end{aligned}
$$

