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Abstract. The paper concerns identification of Hammerstein system under 

nonparametric prior knowledge about the static nonlinear characteristic. The 

identification task is decomposed by the prediction of the hidden interaction 

signal. The standard kernel approach is modified to cope with the problem of 

constant offset between the regression function and the static characteristic in 

Hammerstein system, which was not solved in the previous papers. The idea is 

based on alternate updating of the offset and the estimate of the impulse response 

of the linear block. Both levels of the algorithm are given in the recursive version. 
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1 Introduction 

The idea of the presented approach is derived from the combined parametric-

nonparametric methods of block-oriented nonlinear system identification. The paper is 

inspired by [5] and [6], where the nonparametric (kernel) regression estimate was used 

for decomposition of Hammerstein system (Fig. 1) identification task into two 

independent subproblems. The models of nonlinear and linear subsystems are 

alternately updated with the use of the predictor of interaction signal 𝑣𝑘. As it is 

commonly known from literature (see e.g. [3], [11], [10], [9]), the representation of 

complex systems is not unique owing to inaccessibility of internal signals. For any scale 

𝑠, the class of Hammerstein systems with the nonlinear characteristics 𝑠𝜇() and the 

impulse response {
𝜆𝑟

𝑠
} is equivalent (indistinguishable) form the input-output point of 

view. Moreover, the constant nonzero offset appears between the estimated input-

output regression function and the true static nonlinear characteristic 𝜇(). In the 

proposed approach, in the contrary to the papers cited above, and further ideas (see [7] 

and [8]) where both subsystems are identified separately, it is hopeful that the whole 

serial model can fit the data without the scale, and the nonlinearity estimate will be free 

of offset. 
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2 Statement of the problem 

We consider the Hammerstein system, i.e. a tandem consisting of the static nonlinearity 

𝜇() followed by the linear dynamic FIR filter with the impulse response {𝜆𝑟}𝑟=0
𝑀 , driven 

by the i.i.d. random process 𝑢𝑘 and corrupted by the stationary zero-mean white noise 

𝑧𝑘 of finite variance, independent of the system input 

𝑦𝑘 =∑

𝑀

𝑟=0

𝜆𝑟𝜇(𝑢𝑘−𝑟) + 𝑧𝑘, 

where only input-output data (𝑢𝑘 , 𝑦𝑘) are accessible for measurements – and in partic-

ular, the interaction signal 𝑣𝑘 cannot be measured. 

 

Fig. 1. Hammerstein system with interaction predictor. 

It can be easily shown that in such conditions the one dimensional regression function 

of output on input in Hammerstein system is a scaled and shifted version of the 

nonlinear characteristic 𝜇() 

 𝑅(𝑢) = 𝐸[𝑦𝑘|𝑢𝑘 = 𝑢] = 𝜆0𝜇(𝑢) + 𝑑. (1) 

To decompose the complex system identification problem we propose to introduce the 

interaction predictor 𝑣𝑘
𝑃 = 𝑃(𝑢𝑘; {𝑢𝑘, 𝑦𝑘}𝑘=1

𝑁 ) computed on the basis of the set of 

available input-output measurements {𝑢𝑘, 𝑦𝑘}𝑘=1
𝑁 . Owing to [4] and using the kernel 

approach ([12]), it is clear that, for a given 𝑢, the comprehensible predictor can have 

the form 𝑃(𝑢; {𝑢𝑘, 𝑦𝑘}𝑘=1
𝑁 ) = 𝑅̂(𝑢) − 𝑐, where 𝑐 may play the role of coordination 

variable. Such a predictor 𝑃(𝑢; {𝑢𝑘 , 𝑦𝑘}𝑘=1
𝑁 ) is corrected version of kernel regression 

function estimate 𝑅̂(𝑢) (shifted by the constant 𝑐). Thus, selection of 𝑐 will be crucial 

for the method and 𝑐 is further indeed treated as coordination variable (tuning factor) 

which calibrates/tunes the predictor. The use of 𝑦𝑘 − 𝑐 instead of 𝑦𝑘  in standard 

regression function estimate and then application of the model 𝜇(𝑢) ≃ 𝑃(𝑢) instead of 

𝜇(𝑢) ≃ 𝑅̂(𝑢), may lead to nonparametric estimate of nonlinear characteristic which is 

free of bias (offset) 𝑑. The problem is (i) how to select the coordination variable 𝑐 to 

this end, and (ii) how to easily compute coordinated models of both subsystems. The 

presented idea is based on progressive identification, in the sense that the corrected 

model (predictor) of the first subsystem will support identification of the second one, 

by interaction prediction. 
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3 Establishing of coordination factor 𝒄 

Let 𝜆0 = 1 and, to begin with, let {(𝑢𝑗
𝑃, 𝑦𝑗

𝑃)}
𝑗=1

𝑁𝑃
 be the initial set of measurement data 

used for predictor evaluation. The predictor obtained therefrom has the form 

 𝑃 (𝑢; {(𝑢𝑗
𝑃, 𝑦𝑗

𝑃)}
𝑗=1

𝑁𝑃
) = ∑

𝑁𝑃
𝑗=1

𝐾(
𝑢𝑗
𝑃−𝑢

ℎ𝑁𝑃
)

∑
𝑁𝑃
𝑗=1

𝐾(
𝑢𝑗
𝑃−𝑢

ℎ𝑁𝑃
)

𝑦𝑗
𝑃 − 𝑐 = 𝑅̂𝑃(𝑢) − 𝑐. (2) 

For 𝑢𝑘 belonging to the input-output pair (𝑢𝑘, 𝑦𝑘) the proper predicted value 𝑣𝑘
𝑃 of the 

interaction 𝑣𝑘 is thus 𝑣𝑘
𝑃 = 𝑅̂𝑃(𝑢𝑘) − 𝑐. The predicted interaction is next treated as 

being true, i.e. we apply the interaction prediction principle, yielding the following 

relation concerning system dynamics 𝑦𝑘 = ∑
𝑀
𝑟=0 𝜆𝑟𝑣𝑘−𝑟

𝑃 + 𝑧𝑘 = (𝑣𝑘
𝑃
)
𝑇
𝜆 + 𝑧𝑘 , where 

𝑣𝑘
𝑃
= (𝑣𝑘

𝑃 , 𝑣𝑘−1
𝑃 , . . . , 𝑣𝑘−𝑀

𝑃 )𝑇 ,    𝜆 = (1, 𝜆1, . . . , 𝜆𝑀)
𝑇 , letting   𝜆0 = 1. 

3.1 Local identification of the linear dynamics (1st level task) 

Based on predicted interactions, the impulse response 𝜆 is here estimated on the basis 

of a new set of 𝑁 "measurements" {(𝑣𝑘+𝑙
𝑃
, 𝑦𝑘+𝑙)}𝑙=0

𝑁−1
 with the use of least squares 

method. Let 𝑉𝑁
𝑃 = 𝑉𝑁

𝑃(𝑐) = (𝑣𝑘
𝑃
, 𝑣𝑘+1
𝑃
, . . . , 𝑣𝑘+(𝑁−1)

𝑃
)
𝑇
;𝑌𝑁 = (𝑦𝑘 , 𝑦𝑘+1, . . . , 𝑦𝑘+(𝑁−1))

𝑇
, 

and 𝑌𝑁 = 𝑉𝑁
𝑃𝜆, be the linear dynamics model output for a given 𝜆. The goal is thus to 

solve the following minimization problem:‖𝑌𝑁 − 𝑌𝑁‖2
2
→ min

𝜆
. As a result we get: 

 evaluation of 𝜆: 

 𝜆𝑁(𝑐) = (𝑉𝑁
𝑃𝑇(𝑐)𝑉𝑁

𝑃(𝑐))
−1

𝑉𝑁
𝑃𝑇(𝑐)𝑌𝑁 , (3) 

being the best estimate of 𝜆 for a given coordination factor 𝑐, which can be also 

computed recursively (see Section 5); 

 the output of the best model for a given 𝑐: 

 𝑌𝑁(𝑐) = 𝑉𝑁
𝑃(𝑐)𝜆𝑁(𝑐) = 𝑉𝑁

𝑃(𝑐) (𝑉𝑁
𝑃𝑇(𝑐)𝑉𝑁

𝑃(𝑐))
−1

𝑉𝑁
𝑃𝑇(𝑐)𝑌𝑁 , 

for which it holds that 𝑌𝑁 − 𝑌𝑁(𝑐) = [𝐼 − 𝑉𝑁
𝑃(𝑐) (𝑉𝑁

𝑃𝑇(𝑐)𝑉𝑁
𝑃(𝑐))

−1

𝑉𝑁
𝑃𝑇(𝑐)] 𝑌𝑁 . 

Our aim in turn is to select 𝑐 such that the difference between the model output 𝑌𝑁(𝑐) 
and the measured system output 𝑌𝑁 is minimal (in the least squares sense)and in our 

approach this is also fundamental from the coordination task point of view. 
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3.2 Coordination (2nd level task) 

Owing to the above, we thus take the following objective function 

 𝑄𝑁(𝑐) = ‖𝑌𝑁 − 𝑌𝑁(𝑐)‖2
2
→ min

𝑐
, 

and observe that ‖𝑌𝑁 − 𝑌𝑁(𝑐)‖2
2
= (𝑌𝑁 − 𝑌𝑁(𝑐))

𝑇
(𝑌𝑁 − 𝑌𝑁(𝑐)) = 𝑌𝑁

𝑇(𝑌𝑁 − 𝑌𝑁(𝑐)), 

since 𝑌𝑁
𝑇
(𝑐)(𝑌𝑁 − 𝑌𝑁(𝑐)) = 0. Consequently, we get 

 𝑄𝑁(𝑐) = 𝑌𝑁
𝑇 [𝐼 − 𝑉𝑁

𝑃(𝑐) (𝑉𝑁
𝑃𝑇(𝑐)𝑉𝑁

𝑃(𝑐))
−1

𝑉𝑁
𝑃𝑇(𝑐)] 𝑌𝑁 . 

Let 𝟏 = [1] be a matrix with all entries equal to 1, and let 

 𝑅̂
𝑃

(𝑢𝑘+𝑙) = [𝑅̂
𝑃(𝑢𝑘+𝑙), 𝑅̂

𝑃(𝑢(𝑘+𝑙)−1), . . . , 𝑅̂
𝑃(𝑢(𝑘+𝑙)−𝑀)], (4) 

for 𝑙 = 0,1, . . . , 𝑁 − 1. Including that 𝑣𝑖
𝑃 = 𝑅̂𝑃(𝑢𝑖) − 𝑐, we see that the matrix 𝑉𝑁

𝑃(𝑐) 
can be rewritten as 𝑉𝑁

𝑃(𝑐) = 𝑃𝑁 − 𝑐𝟏𝑁×(𝑀+1), where  

 𝑃𝑁 ≜ [𝑅̂
𝑃𝑇

(𝑢𝑘), 𝑅̂
𝑃𝑇

(𝑢𝑘+1), … , 𝑅̂
𝑃𝑇

(𝑢𝑘+(𝑁−1))]
𝑇 . 

In the objective function 𝑄𝑁(𝑐) we thus have in particular that 

 𝑊𝑁
𝑃(𝑐) ≜ 𝑉𝑁

𝑃(𝑐) [𝑉𝑁
𝑃𝑇(𝑐)𝑉𝑁

𝑃(𝑐)]
−1

𝑉𝑁
𝑃𝑇(𝑐) = 

 = (𝑃𝑁 − 𝑐𝟏𝑁×(𝑀+1)) [𝑉𝑁
𝑃𝑇(𝑐)𝑉𝑁

𝑃(𝑐)]
−1

(𝑃𝑁 − 𝑐𝟏𝑁×(𝑀+1))
𝑇
, 

and it can be shown in turn that 𝑉𝑁
𝑃𝑇(𝑐)𝑉𝑁

𝑃(𝑐) = 𝑁𝑇𝑁, where 

 𝑇𝑁 =
1

𝑁
𝑃𝑁
𝑇𝑃𝑁 − 𝑐[

1

𝑁
𝑃𝑁
𝑇𝟏𝑁×(𝑀+1) +

1

𝑁
(𝑃𝑁

𝑇𝟏𝑁×(𝑀+1))
𝑇
] + 𝑐2𝟏(𝑀+1)×(𝑀+1), 

yielding 𝑊𝑁
𝑃(𝑐) = (

1

√𝑁
𝑃𝑁 −

𝑐

√𝑁
𝟏𝑁×(𝑀+1)) 𝑇𝑁

−1 (
1

√𝑁
𝑃𝑁 −

𝑐

√𝑁
𝟏𝑁×(𝑀+1))

𝑇

, and 

asymptotically, as 𝑁 grows large, 𝑊𝑁
𝑃(𝑐) ≃ 𝑃𝑁[𝑁𝑇𝑁]

−1𝑃𝑁
𝑇 . Thus, for 𝑁 large enough, 

we can put 𝑊𝑁
𝑃(𝑐) = 𝑃𝑁[𝑁𝑇𝑁]

−1𝑃𝑁
𝑇 =

1

𝑁
𝑃𝑁𝑇𝑁

−1𝑃𝑁
𝑇 which gives the objective function 

of the form 𝑄𝑁(𝑐) = 𝑌𝑁
𝑇[𝐼 −𝑊𝑁

𝑃(𝑐)]𝑌𝑁 = 𝑌𝑁
𝑇 [𝐼 −

1

𝑁
𝑃𝑁𝑇𝑁

−1𝑃𝑁
𝑇] 𝑌𝑁 . Further, noticing 

that 𝑇𝑁
−1 = (𝐴 + 𝐵)−1, where 𝐴 =

1

𝑁
𝑃𝑁
𝑇𝑃𝑁 , 𝐵 = 𝑐

2𝟏(𝑀+1)×(𝑀+1) −

𝑐 [
1

𝑁
𝑃𝑁
𝑇𝟏𝑁×(𝑀+1) +

1

𝑁
(𝑃𝑁

𝑇𝟏𝑁×(𝑀+1))
𝑇
], and using the linear approximation 𝑇𝑁

−1 ≃

(𝐼 − 𝐴−1𝐵)𝐴−1, we get 
1

𝑁
𝑃𝑁𝑇𝑁

−1𝑃𝑁
𝑇 =

1

𝑁
𝑃𝑁𝐴

−1𝑃𝑁
𝑇 −

1

𝑁
𝑃𝑁(𝐴

−1𝐵)𝐴−1𝑃𝑁
𝑇 , 

and finally (taking into account that 𝐵 = 𝐵(𝑐)) the objective function 

 𝑄𝑁(𝑐) = 𝑌𝑁
𝑇𝑌𝑁 −

1

𝑁
𝑌𝑁
𝑇(𝑃𝑁𝐴

−1𝑃𝑁
𝑇)𝑌𝑁 +

1

𝑁
𝑌𝑁
𝑇(𝑃𝑁𝐴

−1)𝐵(𝑐)(𝑃𝑁𝐴
−1)𝑇𝑌𝑁 . 
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Hence, 
𝑑𝑄𝑁(𝑐)

𝑑𝑐
=

1

𝑁
𝑌𝑁
𝑇(𝑃𝑁𝐴

−1)
𝑑𝐵(𝑐)

𝑑𝑐
(𝑃𝑁𝐴

−1)𝑇𝑌𝑁 , where 

 
𝑑𝐵(𝑐)

𝑑𝑐
= 2𝑐𝟏(𝑀+1)×(𝑀+1) − (

1

𝑁
𝑃𝑁
𝑇𝟏𝑁×(𝑀+1) +

1

𝑁
(𝑃𝑁

𝑇𝟏𝑁×(𝑀+1))
𝑇
), 

and the condition 
𝑑𝑄𝑁(𝑐)

𝑑𝑐
= 0 gives eventually optimum (due to convexity of 𝑄𝑁(𝑐)) 

coordination factor 

 𝑐𝑁 =
[(𝑃𝑁𝐴

−1)
𝑇
𝑌𝑁]

𝑇
𝐌(𝑀+1)×(𝑀+1)(𝑃𝑁𝐴

−1)
𝑇
𝑌𝑁

[(𝑃𝑁𝐴
−1)𝑇𝑌𝑁]

𝑇
{𝟏(𝑀+1)×(𝑀+1)}(𝑃𝑁𝐴

−1)𝑇𝑌𝑁
, 

for 𝑁 large, where 𝐌(𝑀+1)×(𝑀+1) =
1

2𝑁
[𝑃𝑁
𝑇𝟏𝑁×(𝑀+1) + (𝑃𝑁

𝑇𝟏𝑁×(𝑀+1))
𝑇
]. 

Noticing that (𝑃𝑁𝐴
−1)𝑇𝑌𝑁 = 𝑁[𝑃𝑁(𝑃𝑁

𝑇𝑃𝑁)
−1]𝑇𝑌𝑁 , and denoting 

 [𝑃𝑁(𝑃𝑁
𝑇𝑃𝑁)

−1]𝑇𝑌𝑁 ≜ 𝐿𝑀+1, (5) 

we get 𝑐𝑁 =
𝐿𝑀+1
𝑇 𝐌(𝑀+1)×(𝑀+1)𝐿𝑀+1

𝐿𝑀+1
𝑇 {𝟏(𝑀+1)×(𝑀+1)}𝐿𝑀+1

. For derivation of recursive computation algorithms 

of matrix 𝐌 and vector 𝐿 with growing 𝑁, see Appendix A. 

4 Recursive computation of 𝒄𝑵 

Using the simplified notation employed in Appendix A, emphasizing the dependence 

of 𝐌 and 𝐿 on 𝑁 – the number of data, namely 𝐌(𝑀+1)×(𝑀+1) = 𝐌
𝑁 and 𝐿𝑀+1 = 𝐿

𝑁, 

with which 𝑐𝑁 =
𝐿𝑁
𝑇
𝐌𝑁𝐿𝑁

𝐿𝑁
𝑇
𝟏(𝑀+1)×(𝑀+1)𝐿

𝑁
≜

ℒ𝑁

ℳ𝑁
 and taking advantage of (18) and (15) in 

Appendix A, after simple algebra shown in Appendix B, for the numerator ℒ𝑁 and 

denominator ℳ𝑁 we obtain respectively 

 ℒ𝑁 = (
𝑁−1

𝑁
)ℒ𝑁−1 +𝒦ℒ

𝑁 , (6) 

and 

 ℳ𝑁 =ℳ𝑁−1 +𝒦ℳ
𝑁 , (7) 

where 𝒦ℒ
𝑁 = 𝑔𝑁

𝑇𝐌𝑁𝑔𝑁 + 2𝐿
𝑁−1𝑇𝐌𝑁𝑔𝑁 +

1

𝑁
𝐿𝑁−1

𝑇
𝐑𝑁−1𝐿𝑁−1 and 

 𝒦ℳ
𝑁 = 𝑔𝑁

𝑇𝟏(𝑀+1)×(𝑀+1)𝑔𝑁 + 2𝐿
𝑁−1𝑇𝟏(𝑀+1)×(𝑀+1)𝑔𝑁 , 

are proper innovation components with 𝑔𝑁 = 𝐺𝑁𝜌𝑁−1, and 𝐺𝑁 and 𝜌𝑁−1 being 

computed due to (17) and (19) in Appendx A. 

Based on (6) and (7), after ordinary calculation, we get further that 𝑐𝑁 =
ℒ𝑁

ℳ𝑁
=

𝜘𝑁
ℒ𝑁−1

ℳ𝑁−1
+ 𝑡𝑁 , it is 

 𝑐𝑁 = 𝜘𝑁𝑐𝑁−1 + 𝑡𝑁 , (8) 
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or equivalently 

 𝑐𝑁 = 𝑐𝑁−1 + [𝑡𝑁 − 𝑤𝑁𝑐𝑁−1], (9) 

where 

 𝜘𝑁 =
1−(

1

𝑁
)

1+(
𝒦ℳ
𝑁

ℳ𝑁−1
)

;         𝑡𝑁 =
(
𝒦ℒ
𝑁

ℳ𝑁−1
)

1+(
𝒦ℳ
𝑁

ℳ𝑁−1
)

, and 𝑤𝑁 ≜ 1 − 𝜘𝑁 =
(
1

𝑁
)+(

𝒦ℳ
𝑁

ℳ𝑁−1
)

1+(
𝒦ℳ
𝑁

ℳ𝑁−1
)

, 

i.e. a rather simple recursive computation rule for updating the coordination factor 𝑐 
with growing 𝑁. Notice that asymptotically, for 𝑁 = ∞, the equation (8) takes the form 

𝑐∞ = 𝜘∞𝑐∞ + 𝑡∞ ,i.e., (1 − 𝜘∞)𝑐∞ = 𝑡∞, and hence 𝑐∞ =
𝑡∞

1−𝜘∞
=

𝑡∞

𝑤∞
=

𝒦ℒ
∞

𝒦ℳ
∞, where 

𝒦ℒ
∞ = 𝑔∞

𝑇𝐌∞𝑔∞ + 2𝐿
∞𝑇𝐌∞𝑔∞, and  𝒦ℳ

∞ = 𝑔∞
𝑇 𝟏(𝑀+1)×(𝑀+1)𝑔∞ +

2𝐿∞
𝑇
𝟏(𝑀+1)×(𝑀+1)𝑔∞, is the limit value of 𝑐 in the predictor (2). 

5 Recursive identification of the impulse response 𝝀 

Recalling that (see (3) and related denotations) 𝜆𝑁 = (𝑉𝑁
𝑃𝑇𝑉𝑁

𝑃)
−1

𝑉𝑁
𝑃𝑇𝑌𝑁 , and using 

standard recursive least squares computation scheme we get immediately 

 𝜆𝑁 = 𝜆𝑁−1 + Γ𝑁𝑣𝑘+(𝑁−1)
𝑃

[𝑦𝑘+(𝑁−1) − (𝑣𝑘+(𝑁−1)
𝑃

)
𝑇
𝜆𝑁−1], (10) 

where 

 Γ𝑁 = Γ𝑁−1 −
Γ𝑁−1𝑣𝑘+(𝑁−1)

𝑃
(𝑣𝑘+(𝑁−1)
𝑃

)
𝑇
Γ𝑁−1

1+(𝑣𝑘+(𝑁−1)
𝑃

)
𝑇
Γ𝑁−1𝑣𝑘+(𝑁−1)

𝑃
, (11) 

and (𝑣𝑘+(𝑁−1)
𝑃

)
𝑇
= 𝑅̂

𝑃

(𝑢𝑘+(𝑁−1)) − 𝑐𝑁[1,1, . . . ,1]1×(𝑀+1). 

6 The identification algorithm 

The above analysis leads eventually to the following multi stage routine for recursive 

identification of Hammerstein system: 

1.  Correcting of the coordination variable 𝑐 ((9)) 

 𝑐𝑁 = 𝑐𝑁−1 + [𝑡𝑁 − 𝑤𝑁𝑐𝑁−1] 

2.  Computing of the corrected non-linearity model (predictor) ((2)) 

 𝑃 (𝑢; {𝑢𝑗
𝑃, 𝑦𝑗

𝑃}
𝑗=1

𝑁𝑃
) = 𝑅̂𝑃 (𝑢) − 𝑐𝑁 

3.  Computing of the corrected interactions (see (4)) 
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 (𝑣𝑘+(𝑁−1)
𝑃

)
𝑇
= 𝑅̂

𝑝

(𝑢𝑘+(𝑁−1)) − 𝑐𝑁[1,1, . . . ,1]1×(𝑀+1) 

4.  Updating Γ𝑁 ((11)): Γ𝑁 = Γ𝑁−1 − Γ𝑁−1Ψ𝑁−1 

5.  Correcting of the estimate of impulse response 𝜆 ((10)) 

 𝜆𝑁 = 𝜆𝑁−1 + Γ𝑁𝜉𝑁−1, 

where 𝑡𝑁 =
(
𝒦ℒ
𝑁

ℳ𝑁−1
)

1+(
𝒦ℳ
𝑁

ℳ𝑁−1
)

,        𝑤𝑁 =
(
1

𝑁
)+(

𝒦ℳ
𝑁

ℳ𝑁−1
)

1+(
𝒦ℳ
𝑁

ℳ𝑁−1
)

, and respectively 

 Ψ𝑁−1 = 𝑣𝑘+(𝑁−1)
𝑃

(𝑣𝑘+(𝑁−1)
𝑃

)
𝑇
Γ𝑁−1 (1 + (𝑣𝑘+(𝑁−1)

𝑃
)
𝑇
Γ𝑁−1𝑣𝑘+(𝑁−1)

𝑃
)
−1

, 

and  𝜉𝑁−1 = 𝑣𝑘+(𝑁−1)
𝑃

[𝑦𝑘+(𝑁−1) − (𝑣𝑘+(𝑁−1)
𝑃

)
𝑇
𝜆𝑁−1]. 

7 Numerical implementation in Matlab 

The Matlab implementation of kernel regression based identification of Hammerstein 

system, with automatically selected bandwidth parameter, can be found in the Nonpar-

ametric System Identification Toolbox, proposed by the authors. The actual version of 

the library and its documentation can be accessed at the WWW page 

http://staff.iiar.pwr.wroc.pl/grzegorz.mzyk/KIT. 

8 Summary 

It was shown, that the decomposition and coordination concept usually used for solving 

complex optimization problems can be also applied in block-oriented system 

identification. Using this strategy, the Hammerstein system identification problem has 

been decomposed on two independent local subproblems, in which the models of static 

nonlinearity and linear dynamics are identified separately, and then coordinated. The 

proposed procedure is based on known and well elaborated estimation algorithms, 

namely least squares estimation and nonparametric kernel regression function 

estimation routines. Nonparametric algorithm works without any parametric 

knowledge of nonlinearity representation. After proper correction, the resulting 

estimate supports estimation of parameters of linear block and plays the role of 

coordination variable generator. In result, the model as a whole may be free of the scale 

and offset even under nonparametric knowledge of the static characteristic, which is in 

contrast to the existing literature. It was also shown that all stages of the identification 

procedure can be accomplished recursively, in a rather convenient way. 

In the paper, 𝑁𝑝 – the numer of data used at the beginning of our routine for 

predictor set up, was treated as being fixed. However, for better efficiency of the 

scheme 𝑁𝑝 should grow. Owing to the overall context of the paper, it is proper to remark 

that numerator and denominator of 

http://staff.iiar.pwr.wroc.pl/grzegorz.mzyk/KIT
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 𝑅̂𝑃(𝑢) =

1

𝑁𝑃
∑
𝑁𝑃
𝑗=1

𝐾(
𝑢𝑗
𝑃−𝑢

ℎ𝑁𝑃
)𝑦𝑗

𝑃

1

𝑁𝑃
∑
𝑁𝑃
𝑗=1

𝐾(
𝑢𝑗
𝑃−𝑢

ℎ𝑁𝑃
)

≜
ℒ𝑁𝑝
𝑃

ℳ𝑁𝑝
𝑃  

in the predictor (2) can also be easily recomputed in a recursive fashion, similarly as in 

(13)-(14) in Appendix A: 

 ℒ𝑁𝑝
𝑃 =

𝑁𝑝−1

𝑁𝑝
[ℒ𝑁𝑝−1

𝑃 +
1

𝑁𝑝−1
𝐾 (

𝑢𝑁𝑝
𝑃 −𝑢

ℎ𝑁𝑃
)𝑦𝑁𝑝

𝑃 ] 

 ℳ𝑁𝑝
𝑃 =

𝑁𝑝−1

𝑁𝑝
[ℳ𝑁𝑝−1

𝑃 +
1

𝑁𝑝−1
𝐾 (

𝑢𝑁𝑝
𝑃 −𝑢

ℎ𝑁𝑃
)] 

and thus gradually updated with growing the number 𝑁𝑝 of predictor data. 

Finally, it is also worth to notice that in our approach any efficient non-parametric 

regression function estimate can be used in the role of 𝑅̂𝑃(𝑢) in the predictor (2). 

Appendices 

Appendix A. Calculation of 𝐌(𝑴+𝟏)×(𝑴+𝟏) and 𝑳𝑴+𝟏 

A1. Recursive computing of matrix 𝑴(𝑀+1)×(𝑀+1) 

Taking into account definitions of  𝑃𝑁 and 𝟏𝑁×(𝑀+1), after simple algebra we obtain 

 𝐌(𝑀+1)×(𝑀+1) =
1

2𝑁
[𝑃𝑁
𝑇𝟏𝑁×(𝑀+1) + (𝑃𝑁

𝑇𝟏𝑁×(𝑀+1))
𝑇
] = [𝑚𝑖𝑗]𝑖,𝑗=0,1,…,𝑀 

where 

 𝑚𝑖𝑗 =
1

2

[
 
 
 
 
1

𝑁
∑𝑁−1𝑙=0 𝑅̂

𝑃(𝑢𝑘+𝑙−𝑖)⏟            

𝑚𝑖𝑁

+
1

𝑁
∑𝑁−1𝑙=0 𝑅̂

𝑃(𝑢𝑘+𝑙−𝑗)⏟            

𝑚𝑗𝑁 ]
 
 
 
 

, (12) 

and 𝑚𝑖𝑗 = 𝑚𝑗𝑖. Thus, 𝑚𝑖𝑗 ≜ 𝑚𝑖𝑗,𝑁 =
1

2
[𝑚𝑖𝑁 +𝑚𝑗𝑁]. 

For empirical means in (12) we simply get recursive versions 

 𝑚𝑖𝑁 =
𝑁−1

𝑁
[𝑚𝑖,𝑁−1 +

1

𝑁−1
𝑅̂𝑃(𝑢𝑘+(𝑁−1)−𝑖)], (13) 

 𝑚𝑗𝑁 =
𝑁−1

𝑁
[𝑚𝑗,𝑁−1 +

1

𝑁−1
𝑅̂𝑃(𝑢𝑘+(𝑁−1)−𝑗)], (14) 

which further leads to 𝑚𝑖𝑗,𝑁 =
𝑁−1

𝑁
[𝑚𝑖𝑗,𝑁−1 +

1

𝑁−1
𝑅𝑖𝑗
𝑃
], where 

 𝑅𝑖𝑗
𝑃
=

𝑅̂𝑃(𝑢𝑘+(𝑁−1)−𝑖)+𝑅̂
𝑃(𝑢𝑘+(𝑁−1)−𝑗)

2
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or equivalently 𝑚𝑖𝑗,𝑁 = (
𝑁−1

𝑁
)𝑚𝑖𝑗,𝑁−1 +

1

𝑁
𝑅𝑖𝑗
𝑃
. Hence, for the matrix  

 𝐌(𝑀+1)×(𝑀+1) ≜ 𝐌(𝑀+1)×(𝑀+1)
𝑁 = [𝑚𝑖𝑗,𝑁](𝑀+1)×(𝑀+1) ≜ 𝐌

𝑁 

we get 

 𝐌𝑁 =
𝑁−1

𝑁
𝐌𝑁−1 +

1

𝑁
𝐑𝑁−1, (15) 

where 𝐑𝑁−1 = [𝑅𝑖𝑗
𝑃
]
(𝑀+1)×(𝑀+1)

. 

A2. Recursive computing of vector 𝐿𝑀+1 

Since (cf. (5)) 

 𝐿𝑀+1 = (𝑃𝑁
𝑇𝑃𝑁)

−1𝑃𝑁
𝑇𝑌𝑁 , (16) 

the vector 𝐿𝑀+1 = 𝐿𝑀+1
𝑁 ≜ 𝐿𝑁 is in fact the least squares model of the linear dynamic 

object with the input 𝑃𝑁, parameters 𝐿 and the output 𝑌𝑁, i.e. the result of the following 

optimization task ‖𝑌𝑁 − 𝑃𝑁𝐿‖2
2 → min𝐿 , where ‖ ‖2 is the Euclidean norm. Taking 

into account definition of the matrix 𝑃𝑁, and denoting 𝐺𝑁 = (𝑃𝑁
𝑇𝑃𝑁)

−1, after standard 

steps we get recursive version of (16) 

 𝐿𝑁 = 𝐿𝑁−1 + 𝐺𝑁𝑅
𝑃̂
𝑇

(𝑢𝑘+(𝑁−1)) [𝑦𝑘+(𝑁−1) − 𝑅̂
𝑃

(𝑢𝑘+(𝑁−1))𝐿
𝑁−1], 

 𝐺𝑁 = 𝐺𝑁−1 −
𝐺𝑁−1𝑅

𝑃̂
𝑇

(𝑢𝑘+(𝑁−1))𝑅̂
𝑃
(𝑢𝑘+(𝑁−1))𝐺𝑁−1

1+𝑅̂
𝑃
(𝑢𝑘+(𝑁−1))𝐺𝑁−1𝑅

𝑃̂
𝑇

(𝑢𝑘+(𝑁−1))

. (17) 

Consequently,  

 𝐿𝑁 = 𝐿𝑁−1 + 𝐺𝑁𝜌𝑁−1, (18) 

where 

 𝜌𝑁−1 = 𝑅
𝑃̂
𝑇

(𝑢𝑘+(𝑁−1)) [𝑦𝑘+(𝑁−1) − 𝑅̂
𝑃

(𝑢𝑘+(𝑁−1))𝐿
𝑁−1]. (19) 

Appendix B. Calculating of 𝓛𝑵 and 𝓜𝑵 

B1. Recursive computing of the numerator ℒ𝑁 

For ℒ𝑁, owing to (18), we have 

 ℒ𝑁 = 𝐿
𝑁𝑇𝐌𝑁𝐿𝑁 = [𝐿𝑁−1 + 𝐺𝑁𝜌𝑁−1]

𝑇𝐌𝑁[𝐿𝑁−1 + 𝐺𝑁𝜌𝑁−1] 

 = 𝐿𝑁−1
𝑇
𝐌𝑁𝐿𝑁−1 + (𝐺𝑁𝜌𝑁−1)

𝑇𝐌𝑁(𝐺𝑁𝜌𝑁−1) + 2𝐿
𝑁−1𝑇𝐌𝑁(𝐺𝑁𝜌𝑁−1), 

and further, owing to (15), we get 
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 𝐿𝑁−1
𝑇
𝐌𝑁𝐿𝑁−1 =

𝑁−1

𝑁
𝐿𝑁−1

𝑇
𝐌𝑁−1𝐿𝑁−1 +

1

𝑁
𝐿𝑁−1

𝑇
𝐑𝑁−1𝐿𝑁−1, 

which leads to ℒ𝑁 = (
𝑁−1

𝑁
)ℒ𝑁−1 +𝒦ℒ

𝑁, where 

 𝒦ℒ
𝑁 = (𝐺𝑁𝜌𝑁−1)

𝑇𝐌𝑁(𝐺𝑁𝜌𝑁−1) + 2𝐿
𝑁−1𝑇𝐌𝑁(𝐺𝑁𝜌𝑁−1) + (

1

𝑁
) 𝐿𝑁−1

𝑇
𝐑𝑁−1𝐿𝑁−1. 

B2. Recursive computing of the denominator ℳ𝑁 

For ℳ𝑁 we have ℳ𝑁 = ℳ𝑁−1 +𝒦ℳ
𝑁 , where ℳ𝑁−1 = 𝐿

𝑁−1𝑇𝟏(𝑀+1)×(𝑀+1)𝐿
𝑁−1, and 

𝒦ℳ
𝑁 = (𝐺𝑁𝜌𝑁−1)

𝑇𝟏(𝑀+1)×(𝑀+1)(𝐺𝑁𝜌𝑁−1) + 2𝐿
𝑁−1𝑇𝟏(𝑀+1)×(𝑀+1)(𝐺𝑁𝜌𝑁−1). 
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