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Abstract—The paper considers popular problem of Hammer-
stein system identification. It is inspired by the real problem
concerning modeling of differential scanning calorimetry for
chalcogenide glass properties examination. In spite of variety of
identification methods proposed in the literature, none of them
can be applied directly, due to specific practical limitations. The
most popular approaches, e.g. overparametrization approach,
or nonparametric regression estimation, require relatively large
number of data or lead to very complicated numerical tasks.
The proposed algorithm consists of two steps. Firstly, the impulse
response of the linear block is identified by the standard least
squares method, assuming i.i.d. input excitation. Next, the coef-
ficients of orthogonal expansion of nonlinear characteristic are
estimated independently by iterative optimization, provided that
the criterion function is convex. Results of simulation examples
give promising results, i.e., satisfactory accuracy and relatively
fast computations.

I. INTRODUCTION

In the paper, the nonlinear dynamic system modeling prob-
lem is considered. If the linear model is not sufficient, the
block-oriented structure of the model is commonly applied,
including static nonlinear blocks, connected with linear dy-
namics. The most popular and the easiest from the system
identification point of view is Hammerstein structure (see
Fig. 1), consisting of static nonlinear element connected in
series with linear dynamic block. Owing to numerous potential
application the problem has been intensively elaborated since
1960’s (see, e.g., [19], [4] , [3], [22], and [2]). The ideas can
be roughly divided into several categories:
• the key term separation methods [23];
• the hierarchical identification methods [5];
• the projection or gradient methods (stochastic gradient,
heuristic, and genetic algorithms) [6];

• the iterative methods [19], [4], [14];
• the overparametrization approach [1], [7];
• nonparametric (kernel and orthogonal), regression-based
identification [10], [8], [21];

• combined methods [11], [12], [9], [15], [17], [16], [18].
Each method is characterized by the specific set of prior

assumptions imposed on the input, the noise, and the class of
admitted nonlinear characteristics. In the real problems (see
e.g. [13]), they cannot be verified and the selection of proper
method can be problematic. In particular, the overparame-
trization approach leads to very attractive linear-in-parameters
representation of Hammerstein system, but it generates the
multivariable algebraic problem. In the nonparametric kernel

regression methods, the prior knowledge can be poor, but its
asymptotic properties reveal for relatively large amount of
measurement data. The purpose of the paper is to propose
numerically attractive and accurate identification method for
i.i.d. random input.
The paper is organized as follows. In Section II, the problem

is formulated in detail. Then, in Section III, two popular ap-
proaches known from literature are shortly described, and their
drawbacks are indicated. Next, in Section IV, our algorithm
is proposed and analyzed. Finally, the results of simulation
examples are given in Section V.

II. STATEMENT OF THE PROBLEM

The Hammerstein system, shown in Fig. 1 is described by
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Fig. 1. Hammerstein system

the following equations

yk =

∞

j=0

γjμ (uk−j) , (1)

μ (u) =

∞

i=1

αiϕi (u) .

We assume that:
A1. The nonlinear characteristic of static block, μ (u), is

square integrable, i.e., μ (u) ⊂ L2. The functions {ϕi ()}∞i=0
constitutes complete orthonormal basis in L2, i.e.

E ϕi1 (u)ϕi2 (u) =
1, as i1 = i2
0, elsewhere .

A2. The linear dynamic block is asymptotically stable, i.e.,
∞
j=0 γj < ∞. To guarantee uniqueness of representation,

without any loss of generality, we also take technical assump-
tion that the steady-state gain of the linear component is one
( ∞

j=0 γj = 1). For detail discussion see [11].
A3. The input {uk} is an i.i.d. random process, with the

probability density function f (u) positive and continuous on
compact support, i.e., f (u) > 0, as u ∈ [umin, umax].
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The goal is to build the finite approximation model of the
system

yk =

p

j=0

gjm (uk−j) , (2)

m (u) =

s

i=1

aiϕi (u) ,

using the input-output measurement pairs {(uk, yk)}Nk=1, such
that

Q (g, a) = E (yk − yk)2 → min
g,a

, (3)

where

g = (g0, g1, ..., gp)
T and a = (a1, a2, ..., as)

T

are model parameters. For simplicity of presentation we as-
sume that the linear block can be satisfactory approximated
by the FIR model γj

p

j=0
, and the terms γp+1, γp+2, ... can

be neglected, i.e., we assume γj = 0 as j > p.
III. STATE OF THE ART

In this section we shortly describe two existing methods for
Hammerstein system identification and indicate its limitations
and drawbacks from the practical point of view.
A. Overparametrization approach
Introducing the vector of aggregated parameters

θ = γ0α1, .., γ0α1, ...., γpα1, .., γpαs
T ,

including all mixed products of γj’s and αi’s, one can repre-
sent the Hammerstein system in by the linear equation with
respect to θ, i.e.,

yk = φTk θ + ,

where is arbitrarily small approximation error, connected
with the neglected tail {αi}∞s+1. Owing to this, θ can be
estimated as follows

θ = ΦTΦ
−1
ΦTY , (4)

where

Φ = φT1 ,φ
T
2 , ...,φ

T
N

T

, Y = (y1, y2, ..., yN )
T ,

and

φk = (ϕ1 (uk) , ..,ϕs (uk) , ....,ϕ1 (uk−p) , ..,ϕs (uk−p))
T

are mapped regressor vectors. The vectors γ =

γ0, γ1, ..., γp
T and α = (α1,α2, ...,αs)

T can be extracted
from the estimate of θ with the use of singular value
decomposition technique ([1]). Although the algorithm is
based on the standard linear least squares procedure, the
dimensionality of θ can exclude the idea in many practical
applications. The number of measurements N must be
necessary greater than the number of aggregated parameters
n = dim θ = (p+ 1) s, and at least n of φk vectors must
be linearly independent for the estimate to be well defined.
Moreover, if n is close to N , then the estimate is very
sensitive on the potential output noise.

B. Nonparametric kernel regression estimation
In the standard regression-based nonparametric methods

(kernel or orthogonal, see e.g. [10]) the system output is treated
as the sum of the two components

yk = γ0μ (uk) +
∞

j=1

γjμ (uk−j) .

First of them, γ0μ (uk), is treated as informative term, and
the remaining part, the tail ∞

j=1 γjμ (uk−j), as the "system"
noise. The observation that the simple input-output static
regression

R(u) E {yk|uk = u} = γ0μ(u) + c

c =

p

j=1

γjEμ(u1)

is equivalent to the system nonlinearity (up to some scale and
offset), allows for its estimation by, e.g., kernel method

μ (u) =
N
k=1 ykK

uk−u
h

N
k=1 ykK

uk−u
h

(5)

under very poor prior knowledge. The parametric form of
μ () and the difference equation describing linear filter need
not to be known. Nevertheless, asymptotic properties of the
estimates works for relatively large number of measurements.
For moderate N , the "noise" term ∞

j=1 γjμ (uk−j) can
dominate the usable one, i.e. γ0μ (uk), and produce high
variance error. This problem is widely discussed in [15].

IV. THE PROPOSED ALGORITHM

The proposed algorithm has two steps. It starts from esti-
mation of impulse response of the linear block by the least
squares method. Then, in second step, the nonlinear block is
decomposed on s parallel channels, and each channel is iden-
tified independently of the others, by iterative optimization.

A. Identification of linear dynamic block

The impulse response γ = γ0, γ1, ..., γp
T is estimated by

the least squares method

γ = ΞTNΞN
−1
ΞTNYN , (6)

where

ΞN = ϑT1 ,ϑ
T
2 , ...,ϑ

T
N

T

,

ϑk = u∗k, u
∗
k−1, ..., u

∗
k−p

T ,
u∗k = uk − Euk,
YN = (y∗1 , y

∗
2 , ..., y

∗
N )

T ,
y∗k = yk − Eyk.

The estimate γ should be then normalized, such that
p
j=0 γj = 1 (see Assumption A2). The convergence γ → γ,

as N → ∞, is a simple consequence of the fact that
E y∗k+ju

∗
k is proportional to γj .
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B. Identification of static nonlinear characteristics
The model (2) of the Hammerstein system is shown in

Fig. 2. It consists of s parallel channels with coefficients
ai, i = 1, 2, ..., s. As it will be shown below, the channels
can be identified independently owing to orthogonality of
basis functions ϕi’s with respect to the input probability
density function f(u). The algorithm looks for the best model
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Fig. 2. The parametric model

parameters g and a to minimize the following criterion

Q (g, a) = E {yk(g, a)− yk}2 → min
g,a

.

Let us introduce the symbol

δi ai − αi (7)

for the error of individual coefficient αi of the nonlinearity
representation, and let

xj

s

i=1

gjai − γjαi ϕi (uk−j) (8)

be the output error connected with δi. One can write that

xj =

s

i=1

gj (αi + δi)− γjαi ϕi (uk−j) =

=
s

i=1

gj − γj αi + gjδi ϕi (uk−j) ,

and hence

yk − yk =

p

j=0

xj =

p

j=0

s

i=1

gj − γj αiϕi (uk−j) +

+

p

j=0

s

i=1

gjδiϕi (uk−j) .

For gj = γj we obtain that

yk − yk =
s

i=1

p

j=0

γjδiϕi (uk−j) . (9)

Now, we focus on estimation of αi0 and rewrite (9) as follows

yk − yk =
p

j=0

γjδi0ϕi0 (uk−j) + ci0 ,

where

ci0 =
s

i=1,i=i0

p

j=0

γjδiϕi (uk−j) .

Hence

E (yk − yk)2 = E

⎛⎝ p

j=0

γjδi0ϕi0 (uk−j)

⎞⎠2

+ Ec2i0 +

+2E

⎧⎨⎩
⎛⎝ p

j=0

γjδi0ϕi0 (uk−j)

⎞⎠ ci0
⎫⎬⎭ .

For fixed a1, ...., ai0−1, ai0+1, ..., as, it can easily be shown
that

Ec2i0 = β0,

2E

⎧⎨⎩
⎛⎝ p

j=0

γjδi0ϕi0 (uk−j)

⎞⎠ ci0
⎫⎬⎭ = β1δi0 ,

E

⎛⎝ p

j=0

γjδi0ϕi0 (uk−j)

⎞⎠2

= β2δ
2
i0 ,

where β0, β1, and β2 are some unknown constants, i.e.,

Q (ai0) = β2δ
2
i0 + β1δi0 + β0,

and moreover
∂2Q (ai0)

∂δ2i0
= 2β2 > 0,

since

E

⎛⎝ p

j=0

γjδi0ϕi0 (uk−j)

⎞⎠2

> 0.

Consequently, Q (ai0) is convex with respect to ai0 = δi0 +
αi0 , independently of the remaining parameters. In the com-
puter implementation the criterion Q (ai0) is replaced with its
empirical version

Q (ai0) =
1

N

N

k=1

(yk − yk)2 . (10)

The procedure is as follows.
Initialization. Set κ0, λ0, and ε0, such that κ0 < αi0 < λ0,

and 0 < ε0 <
κ0+λ0
2 .

Step n-th. If Q κn+λn
2 − εn ≥ Q κn+λn

2 − εn then set
κn+1 :=

κn+λn
2 − εn, and λn+1 := λn.

If Q κn+λn
2 − εn < Q κn+λn

2 − εn then set κn+1 :=
κn, and λn+1 := κn+λn

2 + εn.
Set εn+1 := εn/2.
Stop condition. Stop, if |λn − κn| is appropriately small.

V. SIMULATION EXAMPLE

To illustrate advantages of the approach we show simple
experiment with the simulated Hammerstein system. The
system with nonlinear characteristic μ (u) = 1 − |u| fol-
lowed by the FIR filter with the 10-element impulse response
γ = (0.1, 0.1, ..., 0.1) was excited by the uniformly distributed
input process uk ∼ U [−1, 1]. The output was disturbed by the
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TABLE I
MISE ERROR FOR VARIOUS METHODS

N = 50 N = 100
kernel estimate 0,2881 0,0190

LS+SVD cannot be computed 0,1120
proposed method 0,0007 0,0001

noise process zk ∼ U [−1, 1]. For N = 50 and N = 100 input-
output data, the following Mean Integrated Squared Error of
the nonlinear characteristic

MISE (μ (u)) = E
1

−1
(μ (u)− μ (u))

2

was computed numerically. In the parametric methods we set
respectively s = 10 and p = 9 with cosine orthonormal basis

1√
2
, cosπx, cos 2πx, ... . The results are shown in Tab. I.

VI. CONCLUSIONS

For simplicity of presentation, in the paper we assumed
uncorrelated input process, and FIR representation of the
linear block. The idea can be naturally generalized for ARMA
IIR models (see, e.g., [20] for the methods based on the
best linear approximation). As regards the colored input, the
instrumental variables technique can be applied instead of
least squares, to cope with the problem (see, e.g., [17]). The
main advantage of the idea is decomposition of the opti-
mization task into two independent subproblems. The impulse
response γj

p

j=0
of the linear dynamic block is estimated

completely independently of the coefficients of static nonlinear
characteristic, using standard and well elaborated linear least
squares procedure. In the second step, thanks to mutual
orthogonality of basis functions ϕi ()’s, all parameters αi’s
are estimated independently by simple iterative optimization
of convex function. We emphasize that if the input is not
uniformly distributed, it is still possible to design appropriate
basis {ϕi ()}, orthogonal with respect to the input probability
density function ([21]). Comparing to the overparametrization
approach, we avoid construction of multidimensional vectors,
which significantly widens the scope of potential applications,
particularly for short data sequences. Moreover, in the con-
trary to nonparametric orthogonal expansion algorithms ([21]),
estimation of coefficients of the nonlinear characteristic is
supported by the model of linear dynamics, obtained in the
first step of the procedure. Results of the simulation examples
show that the comparable accuracy can by achieved for smaller
number of data. Decomposition of the procedure on indepen-
dent channels allows for application of parallel computation
implementation. All derivations concerning identification of
the nonlinear element were made under assumption that the
accurate impulse response γj

p

j=0
is known. The formal

analysis of the estimates αi’s, when the true γj
p

j=0
are

replaced with its estimates γj
p

j=0
, remains open for future

research.
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