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Nonlinearity Recovering in Hammerstein System
from Short Measurement Sequence

Grzegorz Mzyk

Abstract—The problem of data pre-filtering for nonparametric
identification of Hammerstein system from short (finite) data set
is considered. The two-stage method is proposed. First, the linear
dynamic block is identified using instrumental variables technique,
and the inverse of the obtained model is used for output filtering.
Next, the standard procedure of nonparametric regression func-
tion estimation (kernel-based, or using orthogonal series expan-
sion) is applied, involving the filtered output sequence instead of
the original one. It is shown, that for small and moderate number of
data, the estimation error can be significantly reduced in compar-
ison with standard nonparametric methods. The asymptotic prop-
erties of the method (consistency and rate of convergence) remain
the same as in the classical versions of nonparametric algorithms.

Index Terms—Hammerstein system, inverse filtering, kernel re-
gression, nonparametric identification, orthogonal series expan-
sion.

I. INTRODUCTION

T HIS paper addresses the problem of estimation of the
nonlinear static characteristic in Hammerstein system.

It has fundamental meaning in practice, particularly in signal
processing [6], [15], and automatic control [2], [10]. In the
classical, i.e., parametric, approach to system identification it
is assumed that the nonlinear static and linear dynamic block
in Hammerstein system (see Fig. 1) can be described with the
use of finite number of unknown parameters. Since the internal
signal is not available, the parameters of both subsystems are
aggregated (see e.g., [1]) and jointly estimated. Usually it leads
to complicated and badly conditioned numerical procedures,
and the nonlinearity estimates have systematic approximation
error connected with improper model selection. Nonparametric
approach to Hammerstein system identification, proposed in
1980’s (see e.g., [7], [8]) and intensively elaborated till now [9],
[10], [13], [17], is based on the regression function estimation.
Algorithms involve only learning sequence and hence are free
of a risk of false parametric a priori knowledge. Nonparametric
methods enable moreover decentralization of the system iden-
tification task. When the nonlinear characteristic is recovered,
the Hammerstein system is treated as a static system with spe-
cific disturbance and properties of the linear dynamics are, in
some sense, ignored. In spite of their simplicity and good limit
properties, the nonparametric estimates in standard versions
are however inefficient for small and moderate number of data.
The aim of this paper is to propose the modified versions of
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Fig. 1. Hammerstein system.

nonparametric routines, more effective in the use with short
data sequence. The inverse filtering approach (see e.g., [4],
[5], [19]) is used for improving the performance of the non-
parametric estimate of the Hammerstein system nonlinearity.
In particular, it is shown that for a finite number of data, the
variance of the nonparametric estimate can be significantly
reduced without affecting its limit properties. The two stage
algorithm for nonlinearity recovering, exploiting the new idea
of the combined approach to system identification, is proposed.
The parameter form of the static characteristic is not known (in
the contrary to [11] and [12]) and the input signal is assumed
to be a random process (in contrast to e.g., [16]). The strategy
allows to incorporate additional knowledge about the linear
dynamic block to improve small sample size properties of the
nonparametric estimates of the static characteristic.

II. STATEMENT OF THE PROBLEM

A. Hammerstein System

Denote a static non-linearity as and the impulse response
of a linear dynamics as . The Hammerstein system can
now thus be described by the following set of equations:

, or equivalently

(1)

where and denote the system input and output at time ,
respectively, and is the output noise (see Fig. 1).

Assumptions

(A1) The nonlinear characteristic is a Lipschitz func-
tion, i.e., it exists a positive constant , such that for
each it holds .
(A2) The linear dynamics with the unknown impulse re-
sponse is stable, i.e., , and can
be described by the difference equation, i.e.,

. The order is finite and known a
priori.
(A3) The input and the noise are mutually in-
dependent i.i.d. random processes, ,

and . It exists the input proba-
bility density .

The objective is to recover using input-output measure-
ments of the whole Hammerstein system.
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B. Regression Function

The fundamental meaning in nonparametric estimation of
nonlinear block in Hammerstein system has the following
equivalence between the regression function and the
characteristic

(2)
where . By virtue of (2), the regression
function is the scaled and shifted version of the true static
characteristic . Since the signal cannot be measured,
the constant is not identifiable. Hence, for clarity of exposi-
tion and without any loss of generality we can further assume
that , i.e., . The additive constant
can be determined only under additional knowledge, e.g., when
the parametric model of the linear block is given, or when the
static characteristic is known at least in one point. In Section III
we assume that and hence
(for discussion see [11]). This restriction can be omitted in Sec-
tion IV.

III. NONPARAMETRIC ESTIMATION OF THE REGRESSION

As was mentioned above, the standard nonparametric
methods ([7]–[10]) for nonlinearity recovering work com-
pletely independently of the shape of impulse response of the
linear dynamics. The cost paid for simplicity, robustness and
universality is a high variance of estimates. In the standard ap-
proach the Hammerstein system is treated in fact as a nonlinear
static element corrupted by a correlated noise. Namely, one can
specify three components of the output, i.e.,

(3)

The most part of the signal is in a sense wasted, because
the “system noise” produced by linear
dynamics is treated as an additional disturbance. In the Sec-
tions III-A and III-B the most important properties of the kernel
regression estimates and orthogonal series expansion estimation
methods are reminded.

A. Kernel Method

The kernel regression estimate has the form [10], [14]

(4)

where is a bandwidth parameter, which fulfils the following
conditions

(5)

and is a kernel function, such that

(6)

Standard examples are shown in the equation at the bottom of
the page, and with and positive

.
Remark 1: [10] Under (A1)–(A3), (5) and (6), it holds that

in probability, as , at every , at which
and are continuous, and . If moreover
and are at least two times continuously differen-

tiable at , then for the convergence rate is
in probability.

B. Orthogonal Series Expansion Method

Denoting one can write
. Let be the complete set of orthonormal

functions in the input domain. If and are square inte-
grable, then , ,
where and , are orthogonal
series representations of and in the basis .
The standard estimates of the coefficients ’s and ’s are

, and ,
which leads to the following ratio estimate of

(7)

where is some cutoff level [7].
Remark 2: [10] To assure vanishing of the approximation

error, the scale must behave so that
. For the convergence of to , the rate

of -increasing must be appropriately slow, e.g.,
for trigonometric or Legendre

series, for Laguerre series,
for Hermite series. Optimal

choice of with respect to the rate of convergence is
considered in [7] and [13].

IV. THE PROPOSED ALGORITHM

Under Assumption (A2) and the fact that we
obtain

(8)
where , and

are zero-mean stationary random processes. Equation
(8) may be rewritten in the form

(9)
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where is some (not informative) constant, and

(10)
may be interpreted as a zero-mean correlated
random disturbance. Introducing the regressor

, and
the vector of unknown parameters

(11)

we get , , or in the com-
pact, matrix-vector version , where

,
, and .

A. The Two Stage Method

The scheme of the proposed procedure is presented as fol-
lows.
Step 1. Identify the parameter vector (11) by the instrumental

variables method:

where

(12)

is additional matrix including instruments , which
fulfill the following two standard conditions [12]

(13)

and perform the following FIR output filtering

(14)

Step 2. Using the filtered data , compute the
nonparametric estimate

(15)

or

(16)

Remark 3: Step 1 of the procedure can be replaced by any
deconvolution method [4], and generalized for a class of invert-
ible ARMA models. We assume AR dynamics and present the
instrumental variables method, because each invertible filter can
be approximated with arbitrarily small error by model,
when grows large [3].

Remark 4: Conditions (13) mean that the instruments
should be correlated with output and simultaneously

not correlated with the noise. We refer the reader to [12],
where the universal method of generation of instruments
for Hammerstein system is introduced. In this paper we

assume, for shortness, that we know a priori the func-
tion , such that . In partic-
ular, we can choose , if is odd, or

, if is even (see Remark 1 in [8]).
In Section IV-B we show that the instruments of the form

fulfill (13).

B. Limit Properties

The following theorem holds.
Theorem 1: If , , in

probability as , then

(17)

in probability as .
Proof: It is obvious that the system with the input and

the filtered output also belongs to the class of Hammerstein
systems, and has the same static characteristic . To prove
(17) it remains to show that the resulting linear dynamics (i.e.,

in a cascade with the filter (14)) and the resulting
output noise (i.e., transferred as in (14)) fulfill (A2) and
(A3) as . Let us emphasize that the parameters of the
filter (14) are random. The estimation error in Step 1 has the
form and
under ergodicity of the processes , and
it holds that
and with
probability 1, as . Since is zero-mean
and is independent of for any time instants
and such that , it holds that

.
Using the results presented in [9], concerning depen-
dence between input-output cross-correlation in Hammer-
stein system and the terms of impulse response we have

, where , and
hence

where , , and

. . .
...

...
. . .

. . .

where . For
process the matrix is of full rank [3], [8]. Since

, the estimate (12) is well defined with
probability 1 as . Consequently, for
it holds that,

and in probability, as
. Inserting (8) to (14) we get

(18)

Since for it holds that
with probability 1, we obtain with probability
1, as , which guarantees fulfillment of (A2) and (A3).
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C. Properties for

Owing to (3) and (18) we have respectively ,
and , where , and

. One can show that the variance of
the nonparametric regression function estimate is bounded from
above as follows

(19)

where is some constant dependent of the used kernel or basis
functions, and for kernel estimate or

for orthogonal methods (for details, see, e.g., [13, App.
I–II], and [9, Sec. VI]). The variances of and which influ-
ence the upper bounds [see (19)] of the variances of (4), (7),
(15), and (16) have the form

(20)

(21)

where is some constant. Equations (20) and (21) illustrate the
effect of filtration. If ,
which is often the case in Hammerstein system, then it exists

such that for all it holds that .
The variance of measurement noise is slightly amplified, but the
method gets rid of the harmful influence of the dynamics. For
example, if , , , and , then

whereas .

V. NUMERICAL EXAMPLE

The input and the noise are uniformly distributed on
and , respectively. We took the AR(1)

linear dynamics: , and the nonlinear char-
acteristic:

. In Step 1 we set .
In the kernel-type estimation algorithm (15) we applied

the window kernel
as
elsewhere

, and set

. In the orthogonal series expansion
method (16) we used trigonometric orthonormal system

, , , ,
, and set .

Both methods have been compared with their classical ver-
sions (4) and (7). The mean integrated squared error has been
computed numerically, according the rule

, where stands for and
respectively. The results are presented in Table I. For

small and moderate sample sizes the estimation error has been
reduced about 15 times.

VI. CONCLUSIONS

Additional prior knowledge about the linear dynamic block
allows to speed up the convergence of nonparametric regres-
sion-type estimates of nonlinearity in Hammerstein system. The

TABLE I
���� OF THE KERNEL/ORTHOGONAL EXPANSION ESTIMATES

proper output filtering reduces the estimation error for small and
moderate number of measurements, and does not affect the limit
properties even if the assumed model of the linear dynamics is
not correct. In the light of this, nonparametric methods with data
pre-filtering are worth further studies.
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