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Approaches to system identification

parametric (traditional)
nonparametric
parametric-nonparametric (combined)

semiparametric



Static nonlinearity

Figure: Static nonlinear element

R(u) = E{yilux = u} = E{m(ux) + zeJue = u} = m(u)



Two kinds of knowledge

@ parametric, (shape of formula describing m(u,c*) = m(u))

m(u,c) = cifi(u) +cofa(u) + ... 4+ cpfp(u)

m(u,c) = fi(u,c1)ofor(u,c2)0...0fp(ucp)
e.g.
m(u,c) = c1 + cou + c3u? or m(u,c) = c1(sin cou + cze™*)
@ non-parametric, (measurements)
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The classical approach (parametric)

N
N = arg min Y (v — m(ug, c))?
k=1

Features:
e fast convergence to the optimal model in the class m(u,¢)
(under rich a priori knowledge)
@ but, the risk of systematic approximation error when the
model is bad
e complicated and badly conditioned computations (linear or
nonlinear least squares)
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Nonparametric estimates

Orthogonal expansion, kernel regression

@ are based on the measurements only

@ does not involve the unknown characteristic must belong to
the finite dimmensional class (p — o0 as N — o)

@ converge to the true characteristic
@ are computationally simple

@ have more deegrees of freedom (the choice of tunning
parameters and basis functions)



Hammerstein system

Z

{yi }Zo ! ’

R(u) = E{yxlx =u} =E {271’”(7/%—1') + zuy = u} = Yyou(u) +¢



Nonparametric algorithms

Assumptions

@ The nonlinear characteristic m (1) can be an arbitrary
function, square integrable on [—1,1], and e.g.:
o differentiable

e continuous
o piecewise-smooth

o There is a set of sorted input-output measurements {u,y;},

I=1,...,k

The class of admissible characteristic is now so ample that it
cannot be represented by any parametric model




Orthogonal series basics

Any nonlinearity u (1) has its orthogonal expansion

ww) = ao+ay-p(u)+--+ag-px(u)+--- ad infinitum
= ZDCI"PI'(H)
i=0

where {p;},i=0,1,... is an orthogonal basis in L?[—1,1] and

= (o) = [ 0a)-pi ()




Orthogonal series estimate

A generic orthogonal series algorithm

An orthogonal series algorithm has a form

K(k)
p(u) =Y & pi(u)
i=0

where K (k) is an non-decreasing number sequence and

k U
‘5‘1‘:2/ v pi (1) du
1=1 71




MISE error

The performance of the algorithm is measured by a mean
integrated square error

MISE = E [ (1 (1) — (1)

Error decomposition

stochastic errors

2 5 .
approx? uK - deterministic error bias® fi varp
- ———
- K(k) K(k)
MISE fi = Y o + ) bias’d; + ) varg

i=K(k)+1 i=0 i=0
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Example | — Legendre polynomial series estimate

Legendre polynomial estimate
Legendre polynomial basis is recursively defined as

pi (1) = /2 - P; (u)

P;(u) = 7% - xPiq (u) = 5 - Pip (u)

i

where

with
Py (u) =uand Py (u) =1
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Example Il — Chebyshev polynomial series estimate

Chebyshev polynomial estimate

Chebyshev polynomial basis is recursively defined as
pi(u) = /1= - Pi (u)

Pi (u) = 2xPi_1 (u) — Pi_2 (u)

where

with

Py (u) =uand Py (u) =1




Convergence & rates

Convergence

If K (k) — oo and K (k) /k — 0O then

MISE fi — 0 as k — co.

”
Convergence rate

Let A be a number of derivatives of . If K (k) = kZ then

MISE fi ~ k™21,

\

@ the smoother nonlinearity the faster convergence

@ the rate can be established for smooth nonlinearities only
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Example Il - Wavelet series estimate

Any nonlinearity can be represented in a multiresolution form

A 'crude’ approximation details at the resolution 2M
7\

A

2M_q oM _1
V(u> = 7O“M"'¢Mn(u)+ ;):BMn'lPMn(u) +oe

details at the resolution 2K-1

2k-1_1
+ Z Bx 1 Wx 1, (W) + -+ ad infinitum
n=0

where

1

i = [ 1) gy () and B, [ g (), ()
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Example Ill - multiresolution approximation

1.5 ~
1,
0.5 ~
0 T T 1
0.2 0.4 1
-0.5 ~
11 —K=4 —m
—K=5 —K=3

-15 -



Example Il - Wavelet series estimate

A generic wavelet estimate

The wavelet estimate is of the form

M_q

K(k)-12m—1
u) - Z oY Pvin (Ll) + 2 2 Ian ’ lpmn (u)
n=0 m=M n=0
where

ocMn—Zyz/ Py (4) du and B =i / Py (1

@ ¢ (u) and 9 (1) can be from Haar or Cohen-Daubechies-Vial
family. ..



Convergence & rates

Convergence and its rate

If K (k) — oo and 2K() /k — 0 then
MISE ji — 0 as k — co.

Let A be a number of derivatives of p. If K(k) = log, k then

2A+1
MISE ji ~ k™21

Let # (1) has a finite number of jumps. If K (k) = 3 log, k then

MISE fi ~ k™2

@ the smoother nonlinearity the faster convergence

o the rate can be established also for discontinuous
nonlinearities!



Kernel estimate

A generic kernel estimate

The algorithm based on kernels has the generic form
_thawe K (5)

Tk (i)

where K is so called kernel function.




Example — rectangular kernel

Rectangular kernel

Using rectangular (uniform) kernel, K () = Ij 1) (1), we obtain a
simple estimate

XY

i (1) = ’jL where L= {l:u € [u—h(k),u+h(k)}

@ Other kernels: Epanechnikov, Gauss, Cauchy. ..
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Convergence & rates

Convergence

If h (k) — 0 and k- h (k) — oo then

MISE fi — 0 as k — co.

”
Convergence rate

Let A be a number of derivatives of u. If h (k) = k=75 then

MISE fi ~ k™21,

\

@ the smoother nonlinearity the faster convergence

@ the rate can be established for smooth nonlinearities only



Class of systems

The class of systems to which the above algorithms can be
directly includes many popular structures like:

o Hammerstein system,
o parallel system,
@ Uryson system, etc.

For instance, for Hammerstein system we have
Ck

(k) —~
Vi =vom (ug) + Y v [m (i) — Em (u1)] +2x = p (ux) + & + 2

i=1
2, Stz
=+ m(u) P {y) > u(u)
U Y Uk Yk

Hammerstein system A ‘static’ system
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Examples of admissible dynamic nonlinear systems

o ORNEES! %
nu) el {A} I[:

m(u) {7}

Uryson system

Zk',m {’Yl} Zfe
1 4’%—'
yr, K

v

Multichannel system Parallel system
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A censored (kernel) sample-mean approach

to Wiener system identification

“eo gy, w0 S

Figure: Wiener system

Yk =H (/Z )\jukj) + z¢
i—0



Assumptions

(A1) {ug} —i.id., bounded (|uy| < timax) random process

(A1la) there exists a p.d.f. of the input &, (1), which is a
continuous and strictly positive function in the estimation points x,
ie., O,(x) >0. or

(A1b) It holds that P(uy = x) > 0 if u; has discrete distribution.
(A2) The unknown impulse response {/\]'};io of the linear /IR filter
is bounded from above as follows

A <e- N

where A € (0,1) is a priori known constant.

(A3) The nonlinearity y(x) is an arbitrary function, which is
continuous almost everywhere on X € (—uUmax, max) (in the sense
of Lebesgue measure).

(A4) The output noise {z} is a zero-mean ergodic process, which
is independent of the input {u}.



The algorithm

where

Ae(x) 2 Jup— x| A%+ Juy 1—x\)\1+\uk_2—x\)\2+
-I-‘uk S(N —x‘)\s



Parametric-nonparametric approach

to Hammerstein system identification

Assumptions
AL: |ug| < Umax, 3 p-d.f. v(u)
A2:

|1 ()| < Wmax
A3: -

Z|’Yz’| < o0

i=0

A4: u(ugy) known for some uy
(let up =0) and y5 =1

Z5:

(o]
Zk =) Witk
i=0

{&} —i.i.d., independent of
{uk}v Eer =0, |€k| < €max
{wi}fio — unknown,

YiZo wi| < oo



Parameter knowledge

Y ) ,

o we are given the formula u(u,c), such that u(u,c*) = p(u),

where ¢* = (c},¢5, ..., cj,)T — true parameters

e u(u,c) — differentiable with respect to ¢

o for each u € [—Umax, Umax]
HVCV(qu)H < Gmax < 00, c e C(C*>

@ c* is identifiable, i.e. there exist such sequence uy, U, ..., N,
that

w(ty, c) = u(iy,c*),n=1,2,..,Ny=c=c"



Estimation of the static characteristic

Qny (€) = 02 [wn — (i, )] c* = argmin, Qu, (c)

Stage 1: On the basis on M pairs {(uk,yk)}kle, for Ny fixed
points {i,; n =1,2,..., Ny} estimate
{wn = p(iy,c*); n=1,2,..,Np}
@ = Ry (ity) — R (0)
Stage 2: Optimize the following criterion
~ NO 2
QNO,M(C) = Z [@n,m — p (i, C)]

n=1

with respect to ¢ and take the Ty, M as the estimate of c*.



Limit properties

If the system is identifiable then

5+ lle—c|I* < Quy(c) <D~ fle —c*|?

Theorem

Assume that T, v is unique and Ty, m, ¢* € C for each M, where
C is bounded convex set in R™. If in stage 1

Ry (#,) = R(it,) + O(M™T) in probability as M — oo

forn =1,2,...,Ny and for u,, = 0 then

oM =€+ O(M™7) in probability as M — oo




Prior knowledge of the linear dynamics

{wi}iw:o
Zk
B 1
Uy /l( ) Wy | (q,l) Vi Yy
Aa?)
U = bowr+ ...+ bswi_s +a10_1 + ... + ApTVk—p
T
9 = (bo, b1, veey bs,al,ﬂlz, ...,Llp)
T
O = (Wh, Wk—1, o) Wk—s, Yk—1s Yk—2/ s Yk—p)
T — —
e = 00+7Z, Zk = Zk — M1Zk—1 — - — OpZk—p

YN = OnNO+Zy, Oy = (191,..., 19N)T, N = (21,...,ZN)T



Nonparametric instrumental variables

(V) em oA g
v = (FmOnm) YN
where
Onm = Biag, o Onm)”
Oem = (WM ooor Wees Mo Yk, o Yiep) |
Yvu = (@1,Mf---/¢N,M)T

~ N N -~ T
Y = (wk,M/ cos Wh—s, My Wk—s—1,M>r -+ wkfsfp,M)

%



Limit properties (1)

Theorem

If the estimate Ry;(1) is bounded, converges to R(u), and the
estimation error in the points u € {O, Uy_,; fork=1,2,..,N and
r=0,1,..,s+p} behaves like

(TzM(u) - R(u)‘ — O(M™™) in probability

then for NM~" — 0 the following conditions are fulfilled
(a’) PlimpN—co (%J@IE,M@N,M) exists and is not singular

(5") Plimn oo (§¥L0Zn) =0




Limit properties (2)

Theorem
Under assumptions of Theorem 2 it holds that

/9\1(\?;/)1 — 0 in probability

as N,M — oo, if NM~T — 0. In particular, for M ~ N(1+0)/7,
« > 0, the asympptotic rate of convergencehas the form

A

B

= 9” = O(N~ ™)) in probability




Optimal instrumental variables

1
L7y

v AV * * N
AV (Fy) 2 By —0 Zy &

Q(¥n) 2 max HA%‘/) (‘PN)HZ
IZulh< 2

Theorem

In Hammerstein system, for each admissible ¥y itholds that

lim Q(¥yn) > I\ljim Q(Y¥y) with probability 1

N—oo

where
‘If?‘\] = (¢T,¢;,...,¢;])T, 1/);: = (wk,...,wk_s,vk_l,...,vk_p)T.




Approximate realization

% ~ ~ ~ ~ ~ ~ T
',bk,M = (wk,M/ Wi—1,M7 +++r Wk—s, M Ok—1,Ms Ok—2,My -+ vk—p,M)

F

UM = 2 Yi MWk—iM
i=0

M-
?i,M = im/ HoM, M Z Yisi — Y) (u — u)
k=1



Summary

o Consistent estimates in the presence of colored noise
@ Problem decomposition with use of nonparametric methods

@ Broad class of models (non-linear-in-parameters + 1IR)



Semiparametric algorithm — assumptions

@ The nonlinear characteristic m (1) can be an arbitrary
function, square integrable, and e.g.:
o differentiable

e continuous
e piecewise-smooth

@ There is a set of input-output measurements {u;,y;},
1=1,...,k
© There is a polynomial model j1,, (1) of order p —1 of the

nonlinearity y (u1); e.g. hard-wired, or taken from Matlab
System Identification toolbox.

The model can offer only crude approximations when the genuine
nonlinearity turns out to be e.g. a piecewise smooth function with
discontinuities.




Additive regression

o Having, by assumption, the polynomial model ,, (u), we are
interested in the remaining part:
() = p (1) =, (u) = E (vl we = u) —p,, (u)

which will further be referred to as residual nonlinearity.

@ The polynomial model 1, (i) can exactly be represented as a
'crude’ wavelet approximation

2M_q

p—1 )
:lei'ulz Z[Xﬁ/ln'(PMn(u)
=0 n=0

where &y, = (7, Papy)-



Wavelet estimate of a residual function

@ The estimate is a version of the presented wavelet estimate

oM_1 —1 2"—1
ﬁr (u) = Z &M” : qoMn + Z Z mn l/]mn
n=0 m=M n=

where the expansion coefficient estimates are computed in a

convenient on-line fashion
k+1 ~(k
ay | _ [ 2l Oy (th1) — Pag (1)
i | = | 8 o (13— (0
where @y, (1) and ¥, (1) are antiderivatives of ¢, (1)

and ¢, (u).

@ The algorithm starts with

+ (Y1 — Yi41)

] = [_06%”] and {(uo =0,10 :0),(u1 =15 :0)}~



Convergence & rates

Convergence rate

Let A be a number of derivatives of u. If K (k) = ﬁ log, k then

MISE fi ~ k™2t
Let p (u) has a finite number of jumps. If K (k) = 3 log, k then

MISE fi ~ k2

@ the smoother nonlinearity the faster convergence (the same
as for polynomials)

@ the rate can be established also for discontinuous
nonlinearities!

@ the convergence holds regardless the actual type of the
pre-model 11, (), be it regular or orthogonal.



[ Je}

Example - Legendre polynomial model and Haar wavelet

amendment

@ The nonlinearities

-1 if u<3/8
mu) =5u’—u’)and m(u) =< 4x—2 if 3/8<u<5/8
1 if 5/8<u

@ The model (based on Legendre polynomial of order p = 4)

4
wy (u) =Y aipi (1) where a; = (u,, pi)
i=0



Example — simulation results




Final conclusions

@ Parametric and nonparametric algorithms complete each other
rather than compete. ..

@ The choice of the algorithm type can separately be made
appropriately to a different a priori knowledge available for
either of the system block.

@ The convergence of the algorithms can formally be shown for
virtually all nonlinear characteristics.

o Semiparametric algorithms benefit from advantages of
parametric and nonparametric ones.



A discovery of Ceres

Beginnings. . .

o Ceres was spotted by G. Piazzi as a result of an exhaustive
search in an attempt to verify Titius-Body rule (ad hoc
model) governing the distance of the Solar system objects
from Sun).

@ The observation of its position were recorded yet no orbit
parameters had been established.

@ The dwarf-planet was lost after traversing behind Sun.

@ Several astronomers (Body, von Zach, Olbers) tried to
determine the orbit and failed. ..



A discovery of Ceres

Towards better models. . .

o They used a wrong model (inappropriate a priori knowledge)
assuming circular shape of the orbit (which result in a biased
model with systematic error), and did also not correctly deal
with error in measurements.

o Gauss ingeniously took into account these errors (proposing
his least squares algorithm to cope with random errors) but
also used a better model admitting elliptical orbits (e.g. the
one based on Kepler's laws).

@ That the Kepler's laws were not an ultimate model for
celestial bodies motion was discovered and explained another
100 years later by another genius, Albert Einstein, whose
general relativity theory finally explained Mercury's orbit
anomalies.
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